Soil P Characteristics in Tree Islands of the Florida Everglades

Daniel L. Irick^{1,2}, Y.C. Li^{1,2}, P.W. Inglett¹, B. Gu³, M.S. Ross⁴, A.L. Wright^{1,5}, and W.G. Harris¹

¹Soil and Water Science Department, University of Florida
²Tropical Research and Education Center
³South Florida Water Management District
⁴Department of Earth and Environment, Florida International University
⁵Everglades Research and Education Center

Generalized Everglades Soil P Pattern

Tree Island Soil and P Characteristics

- Soil classification: Histosol, also Mollisol
- P is typically highest in the head region
- Linkage with island height, bulk density and non-carbon material
- Orthophosphates were dominant at a wading bird colony
- P ranges among islands (~200-100,000 mg kg⁻¹)

P Accumulation Mechanisms

P from Animal Waste

Research Questions and Objective

- What is the dominant form of P in Everglades tree island soil?
- Is biogenic apatite a significant soil P source?

<u>Objective</u>

Determine if soil P characteristics indicate a mechanism for P accumulation in tree islands

Materials and Methods

- 26 islands
- Surface soil (0-10 cm)
- Tropical hardwood hammock communities

Chemical Analysis

Total Elemental Analysis

- Organic matter (OM) by LOI at 550° C
- C and N by dry combustion
- Al, Ca, Fe, Mg & P by dry combustion, acid dissolution
 - -P measured colorimetrically
 - -Cations measured by ICP-OES

Inorganic C & Carbonate Ca

- Non-carbon material = 100 (OM% + CaCO₃%)
- Non-carbonate Ca = total Ca carbonate Ca

Soil P Extraction Sequence

(Modified from Koch and Reddy, 1992)

Mineralogical Analysis

Mineral Identification by X-ray Diffraction (XRD)

- 3 islands with high (~7 % P) concentration
- No pretreatment for organic matter or carbonate removal
- Powder, cavity mount

Physical Fractionation and Analysis

Wet Sieving Separation

(Soukup et al. 2008)

- >2 mm: bioapatite fragments
- 2 mm 45 µm: Sand
- <45 µm: Silt & Clay

Analysis

- Total P & select P associated cations
- Inorganic carbon
- Mineral identification
- Micro-elemental analysis & surface imaging (SEM-EDS)

Results

Select Soil Properties (n = 26)

Parameter (%)	Mean	Median	Min.	Max.
Organic Matter	40.3	30.5	19.8	89.9
Carbon	20.0	16.6	9.6	40.7
Nitrogen	1.3	1.1	0.7	2.4
Phosphorus	4.7	5.2	0.08	8.8
Aluminum	0.3	0.2	0.1	0.7
Calcium	19.5	21.4	4.3	30.0
Iron	0.5	0.4	0.1	1.3
Magnesium	0.5	0.4	0.2	1.0

Distribution of Soil P Forms

Soil Mineral and Phosphorus Relationships

Soil P and Elemental Molar Ratios

- Non-carbon Ca:P ratio approaches **1.67** with increasing P
- Mg:P ratio approaches 0.04 with increasing P

Animal Derived P: Biogenic Apatite

Apatite (Ca-P mineral)

- Ca₁₀(PO₄)₆OH₂
- Ca:P (molar) ratio = 1.67
- Everglades bird and snake bioapatite data (Irick et al. unpub)
 - Ca:P (molar) ratio ≈ 1.63
 - Mg:P (molar) ratio ≈ 0.04

Spatial Soil Mineralogy and Total P Data

Particle Size Separation

	Particle Size Class			
Parameter (%)	>2 mm	Sand	Silt & Clay	
Mean Weight	-	48	52	
Median Weight	-	53	47	
Non-Carbonate Ca	-	25.9 ± 1.5a	15.1 ± 0.4 b	
Phosphorus	13.5 ± 0.03 a	10.2 ± 1.2 a	5.6 ± 0.5 b	

Bone P (Blitz and Pellegrino 1969)

• ≈10-13% P

Everglades Tree Island Bone Samples (Irick et al. unpub)

• $\approx 11\%$ P

Micro-elemental Analysis & Surface Imaging

SEM-EDS Data – Sand Fraction

Conclusions

- Ca bound P (Ca-P) dominates the soil P pool
- Ca-P is primarily <u>apatite</u>, not P adsorbed to or precipitated with calcite
- <u>Bioapatite</u> is a significant source of soil P in tree islands
- Tree island soil P accumulation is promoted by the presence of relatively stable forms of P
- Changes in vegetation, local hydrology or animal use may affect soil P accumulation and stability in tree islands.

Acknowledgements

- Dr. Kati Migliaccio
- Guiqin Yu
- Dr. Yigang Lou
- Dr. Kathy Curtis
- Dr. Li's Lab Group
- Dr. Inglett's Lab Group
- Dr. Len Scinto & Lab Group
- Chumki Banik

Thank You